

Nonunitary Scaling Theory of Non-Hermitian Localization

Kohei Kawabata (University of Tokyo) August 27th, 2020

Collaborator: Shinsei Ryu (Chicago \rightarrow Princeton)

arXiv: 2005.00604

Outline

1. Introduction and motivation

• Non-Hermitian localization

2. Scaling theory of non-Hermitian localization

- Nonunitary scattering matrices
- Scaling equations
- Two-parameter scaling

3. Symmetry and non-Hermitian localization

- No delocalization due to reciprocity (class AI⁺)
- Bidirectional delocalization protected by symplectic reciprocity (class All⁺)

Scaling theory of localization

Anderson localization: disorder-induced localization of coherent waves

Anderson, PR 109, 1492 (1958)

Unified understanding of localization: scaling theory

$$\beta(G) := \frac{d \log G}{d \log L}$$
 is given solely by G
$$G : \text{conductance} \qquad L : \text{length scale}$$

Non-Hermitian physics

Despite the enormous success, Anderson localization has been mainly investigated in **closed and conservative (Hermitian)** systems.

Richer properties appear in non-Hermitian systems. (non-Hermiticity can induce decoherence)

☆ Non-Hermiticity arises from non-conservation of energy and/or particles (e.g. non-equilibrium open systems).

Photonic lattices with gain/loss

Finite-lifetime quasiparticles

Bulk Fermi arc due to non-
Hermitian self-energy.Kozii & Fu, arXiv:
1708.05841

Hatano-Nelson model

3/20

Delocalization is impossible in Hermitian systems in 1D.

Delocalization is possible in the presence of non-Hermiticity!

Hatano & Nelson, PRL **77**, 570 (1996)

$$\hat{H} = \sum_{n} \left\{ -\frac{1}{2} \left[\left(J + \frac{\gamma}{2} \right) \hat{c}_{n+1}^{\dagger} \hat{c}_{n} + \left(J - \frac{\gamma}{2} \right) \hat{c}_{n}^{\dagger} \hat{c}_{n+1} \right] + m_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n} \right\}$$
asymmetric hopping

$$\dots$$

$$\int_{j-1}^{J_{L}} \int_{j}^{J_{R}} \dots$$

$$\int_{j+1}^{J_{R}} Gong et al., PRX 8, 031079 (2018)$$

Strong non-Hermiticity leads to delocalization even in 1D.

Many subsequent works:

Efetov, PRL **79**, 491 (1997); Feinberg *et al.*, Nucl. Phys. B **504**, 579 (1997); Brouwer *et al.*, PRB **56**, R4333(R) (1997); Goldsheid *et al.*, PRL **80**, 2897 (1998); Mudry *et al.*, PRL **80**, 4257 (1998); Yurkevich *et al.*, PRL **82**, 5080 (1999)

Random laser

Random lasers can be described by non-Hermitian disordered systems:

$$\hat{H} = \sum_{n} \left\{ -\frac{J}{2} \left(\hat{c}_{n+1}^{\dagger} \hat{c}_{n} + \hat{c}_{n}^{\dagger} \hat{c}_{n+1} \right) + \underbrace{(m_{n} + i\gamma_{n})}_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n} \right\}$$
complex potential
(gain and/or loss)

No delocalization occurs in 1D and 2D, in contrast to the Hatano-Nelson model.

Delocalization occurs in 3D, and its criticality seems to be the **same as the Hermitian Anderson model.**

e.g. Tzortzakakis *et al.*, PRB **101**, 014202 (2020); Huang *et al.*, PRB **101**, 014204 (2020) (subsequent talk)

Wiersma, Nat. Phys. 4, 359 (2008)

Motivation

• Non-Hermitian disordered systems can exhibit delocalization even in 1D (e.g. Hatano-Nelson model).

• For Hermitian systems, **scaling theory** forbids delocalization in 1D.

Scaling theory of localization should be changed in non-Hermitian systems.

• While the Hatano-Nelson model exhibits delocalization, random lasers do not exhibit delocalization.

What determines the universality of non-Hermitian localization?

Results

- We develop a scaling theory of localization in non-Hermitian systems.
- Non-Hermiticity introduces a new scale and **breaks down the one-parameter scaling**.
 - Two-parameter scaling (origin of delocalization in 1D)

Threefold universality based on reciprocity

Class	Symmetry	Delocalization	Conductances
Α	No	Unidirectional	$e^{(\pm\gamma-1/\ell)L}$
AI^\dagger	$H^T = H$	No	$e^{-L/\ell}$
AII^\dagger	$\sigma_2 H^T \sigma_2^{-1} = H$	Bidirectional	$e^{(\gamma -1/\ell)L}$

Outline

1. Introduction and motivation

• Non-Hermitian localization

2. Scaling theory of non-Hermitian localization

- Nonunitary scattering matrices
- Scaling equations
- Two-parameter scaling

3. Symmetry and non-Hermitian localization

- No delocalization due to reciprocity (class Al⁺)
- Bidirectional delocalization protected by symplectic reciprocity (class All⁺)

Nonunitary scattering matrices

The conductance is obtained by the scattering matrix (Landauer formula)

S

(reflection from right to left) (transmission from right to left) $\begin{pmatrix} r_{\rm T} & t_{\rm T} \end{pmatrix}$

$$= \begin{pmatrix} r_{\rm L} & c_{\rm L} \\ t_{\rm R} & r_{\rm R} \end{pmatrix}$$

(transmission from left to right)

(reflection from left to right)

Hermiticity of the Hamiltonian ${\cal H}$

 \longleftrightarrow Unitarity of the scattering matrix S

☆ The conductance is not necessarily finite in non-Hermitian systems. (direct consequence of non-conservation of particles)

Unitarity of
$$S \longleftrightarrow S^{\dagger}S = 1$$

 $\longrightarrow T + R = 1 \longrightarrow T \le 1$
(transmission and reflection
amplitudes)

Nonunitary regime

☆ Non-unitarity enables delocalization even in 1D.

Thouless criterion

Thouless, Phys. Rep. **13**, 93 (1974)

☆ **Thouless time**: time for a particle to reach one end from the other end

diffusive transport $\longrightarrow t_{\mathrm{Th}} \propto L^2$

To realize this diffusive transport, we need $t_{\rm Th} < \Delta t$ $\Delta t \propto (\Delta E)^{-1} \propto L^d$ (energy-level spacing)

Diffusion is impossible in 1D: $d=1
ightarrow t_{
m Th}/\Delta t \propto L$

☆ Non-unitarity enables a different type of transport.

particle inflow from the environment > localization

 \longrightarrow ballistic transport $t_{
m N} \propto L$

$$\rightarrow t_{\rm N}/\Delta t \propto L^{1-d}$$

can be smaller even in 1D

R. Hamazaki (private communication)

Continuum model

Hatano-Nelson model

$$\hat{H} = \sum_{n} \left\{ -\frac{1}{2} \left[\left(J + \frac{\gamma}{2} \right) \hat{c}_{n+1}^{\dagger} \hat{c}_n + \left(J - \frac{\gamma}{2} \right) \hat{c}_n^{\dagger} \hat{c}_{n+1} \right] + m_n \hat{c}_n^{\dagger} \hat{c}_n \right\}$$

To understand a universal feature of non-Hermitian localization, we consider a **continuum model** of the Hatano-Nelson model.

$$\hat{c}_{n} = e^{ik_{\mathrm{F}}n} \underline{\hat{\psi}_{\mathrm{R}}(n)} + e^{-ik_{\mathrm{F}}n} \underline{\hat{\psi}_{\mathrm{L}}(n)}$$
right-moving left-moving
$$\longrightarrow \hat{H} = \int dx \, (\hat{\psi}_{\mathrm{R}}^{\dagger} \, \hat{\psi}_{\mathrm{L}}^{\dagger}) \, h_{\mathrm{A}} \, (\hat{\psi}_{\mathrm{R}} \, \hat{\psi}_{\mathrm{L}})^{T}$$

$$\hat{h}_{\mathrm{A}} = (-i\partial_{x} + i\gamma/2) \, \tau_{3} + \underline{m_{0}(x)} + \underline{m_{1}(x)} \, \tau_{1}$$
disorder (Gaussian)

☆ Independent from specific details of the model

Hatano & Nelson, PRL 77, 570 (1996)

Scaling equations

We obtain the scaling equations for the continuum model $\,h_{
m A}\,$ (non-unitary generalization of the DMPK equations)

- For $\gamma>0$, $T_{\rm R}$ is amplified, and $T_{\rm L}$ is attenuated $(T_{\rm R}
 eq T_{\rm L})$.
- $T_{\mathrm{R/L}} =: e^{\pm \gamma L} \tilde{T}$

transmission amplitude in Hermitian systems

Around $\gamma = \gamma_{
m c} := 1/\ell$, $G_{
m R}$ exhibits criticality. $|G_{
m R} - G_{
m c}| \propto |\gamma - \gamma_{
m c}|$

Two-parameter scaling

Scaling equation
$$\frac{\langle dT_{\rm R/L} \rangle}{dL} = \pm \gamma T_{\rm R/L} - \frac{T_{\rm R/L} \left(1 - R_{\rm L/R}\right)}{\ell}$$

- Hermitian ($\gamma = 0$) : the scaling equation is described solely by L/ℓ (one-parameter scaling)
- Non-Hermitian ($\gamma
 eq 0$) : two length scales $\,\ell, \gamma^{-1}$

★ Two-parameter scaling $(G_{\rm R} \& G_{\rm L})$

The unusual delocalization originates from the breakdown of the one-parameter scaling.

Outline

1. Introduction and motivation

• Non-Hermitian localization

2. Scaling theory of non-Hermitian localization

- Nonunitary scattering matrices
- Scaling equations
- Two-parameter scaling

3. Symmetry and non-Hermitian localization

- No delocalization due to reciprocity (class AI⁺)
- Bidirectional delocalization protected by symplectic reciprocity (class All⁺)

Time reversal and reciprocity

☆ Symmetry can change universality of Anderson localization.

Threefold way by time-reversal symmetry (reciprocity)

Class A: no symmetry Class AI: $H^* = H^T = H$ Class AII: $\sigma_2 H^* \sigma_2 = \sigma_2 H^T \sigma_2 = H$

• Localization is enhanced in class AI, while it is suppressed in class AII.

e.g. Delocalization in 2D class All Hikami *et al.*, PTP **63**, 707 (1980)

NO delocalization in 2D class A

Does symmetry change universality of localization even in non-Hermitian systems?

Reciprocity in non-Hermitian systems

Two symmetry is different in non-Hermitian systems, while it is equivalent in Hermitian systems.

• Why is the latter symmetry reciprocity?

$$H = H^T \longleftrightarrow S = S^T \longleftrightarrow t_{\rm L} = t_{\rm R}^T$$
(reciprocal transport)

★ Reciprocity leads to threefold universality of localization.

No delocalization (class AI⁺)

Continuum model in class AI⁺

 $h_{\mathrm{AI}^{\dagger}} = -\mathrm{i}\tau_{3}\partial_{x} + m_{0}\left(x\right) + \left(m_{1}\left(x\right) + \mathrm{i}\gamma/2\right)\tau_{1}$

reciprocity:
$$au_1 h_{\mathrm{AI}^\dagger}^T au_1 = h_{\mathrm{AI}^\dagger}$$

$$\implies S = S^T, \ G_{\rm R} = G_{\rm L}$$

The universality is the same as the Hermitian counterpart.

☆ The absence of delocalization in random lasers originates from reciprocity.

Hermitian Hamiltonian in class AI + complex onsite potential \rightarrow non-Hermitian Hamiltonian in class AI⁺

15/2

Bidirectional delocalization (class AII⁺)

Symplectic reciprocity gives rise to a new type of delocalization.

Threefold universality

☆ Threefold universality of non-Hermitian localization by reciprocity

Class	Symmetry	Delocalization	Conductances	_
Α	No	Unidirectional	$e^{(\pm\gamma-1/\ell)L}$	(Hatano-Nelson)
AI^\dagger	$H^T = H$	No	$e^{-L/\ell}$	(random laser)
$\operatorname{AII}^{\dagger}$	$\sigma_2 H^T \sigma_2^{-1} = H$	Bidirectional	$e^{(\gamma -1/\ell)L}$	(symplectic Hatano-Nelson)

\Rightarrow Localization is enhanced in class AI⁺, while it is suppressed in class AII⁺.

Similar to the Hermitian counterparts, but the influence pf reciprocity is more dramatic

★ Time-reversal symmetry does not change universality. $(H^* = H, \ \sigma_2 H^* \sigma_2 = H)$

Lattice models (class A)

Numerical calculations of localization lengths (transfer-matrix method).

e.g. Kramer et al., Int. J. Mod. Phys. B 24, 1841 (2010)

☆ Two localization lengths in non-Hermitian systems

(non-Hermitian) $\underline{\xi_L \neq \xi_R}, \ G_L \neq G_R$ (Hermitian) $\xi_L = \xi_R, \ G_L = G_R$

Hatano-Nelson model (class A)

$$\hat{H} = \sum_{n} \left\{ -\frac{1}{2} \left[\left(J + \frac{\gamma}{2} \right) \hat{c}_{n+1}^{\dagger} \hat{c}_n + \left(J - \frac{\gamma}{2} \right) \hat{c}_n^{\dagger} \hat{c}_{n+1} \right] + m_n \hat{c}_n^{\dagger} \hat{c}_n \right\}$$

Class	Symmetry	Delocalization	Conductances
A	No	Unidirectional	$e^{(\pm\gamma-1/\ell)L}$
AI^\dagger	$H^T = H$	No	$e^{-L/\ell}$
$\operatorname{AII}^{\dagger}$	$\sigma_2 H^T \sigma_2^{-1} = H$	Bidirectional	$e^{(\gamma -1/\ell)L}$

Lattice models (class All⁺)

• Symplectic Hatano-Nelson model (class All⁺) cf. Okuma *et al.*, PRL **124**, 086801 (2020)

$$\hat{H} = \sum_{n} \left\{ -\frac{1}{2} \left[\hat{c}_{n+1}^{\dagger} \left(J + \frac{\gamma \sigma_3}{2} - \mathrm{i} \Delta \sigma_1 \right) \hat{c}_n + \hat{c}_n^{\dagger} \left(J - \frac{\gamma \sigma_3}{2} + \mathrm{i} \Delta \sigma_1 \right) \hat{c}_{n+1} \right] + \hat{c}_n^{\dagger} \left(m_n + h \sigma_3 \right) \hat{c}_n \right\}$$

Class	Symmetry	Delocalization	Conductances
А	No	Unidirectional	$e^{(\pm\gamma-1/\ell)L}$
AI^\dagger	$H^T = H$	No	$e^{-L/\ell}$
AII^\dagger	$\sigma_2 H^T \sigma_2^{-1} = H$	Bidirectional	$e^{(\gamma -1/\ell)L}$

Reciprocity leads to
$$\xi_{\rm L} = \xi_{\rm R}, \ G_{\rm L} = G_{\rm R}$$

10

 \Rightarrow The delocalization is protected by reciprocity.

A small symmetry-breaking perturbation destroys the delocalization. $(h\sigma_z)$

cf. Okuma & Sato, PRL 123, 097701 (2019)

Remarks

Other symmetry classes

Dyson, PR 92, 1331 (1953)

In the presence of chiral (sublattice) symmetry, delocalization can appear even in Hermitian systems in 1D.

$$\tau_1 H \tau_1 = -H$$

$$\tau_1 H \tau_1 = -H$$

$$\tau_1 H^{\dagger} \tau_1 = -H$$

$$\tau_1 H^{\dagger} \tau_1 = -H$$

$$(sublattice symmetry)$$

$$unitary delocalization$$

$$(chiral symmetry)$$

Random-matrix theory

Reciprocity leads to threefold universality of non-Hermitian random matrices.

(Tomorrow's talk by Hamazaki)

Hamazaki, Kawabata, Kura & Ueda, PRR 2, 023286 (2020)

Summary

- We develop a scaling theory of localization in non-Hermitian systems.
- Non-Hermiticity introduces a new scale and breaks down the one-parameter scaling: two-parameter scaling.
- Threefold universality based on reciprocity.

