Classifying space and Clifford algebra*

Kohei Kawabata (Institute for Solid State Physics, University of Tokyo)
18th January 2025

1 Classifying space

We summarize derivations of the classifying spaces for Hermitian (random) matrices in the tenfold
Altland-Zirnbauer (AZ) symmetry classification (Table 1). The AZ symmetry consists of time-reversal

symmetry, particle-hole symmetry, and chiral (sublattice) symmetry,

THT '=H, T?==1, (1)
CHC ''=—H, (?=+1, )
SHS '=-H, §*=1, (3)

with antiunitary matrices 7 and C, and a unitary matrix S.
Below, we consider a flattened gapped Hermitian matrix H satisfying H? = 1. Specifically, for a

given gapped Hermitian Hamiltonian,

H= Y Elp)loil+ Y, Eile){pil @)

i€{occupied} i€{empty}

Table 1: Classifying spaces of Hermitian matrices in the tenfold Altland-Zirnbauer (AZ) symmetry
classification. The AZ symmetry consists of time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CS).

AZ class TRS PHS CS Classifying space o (%)
A 0 0 0 Co U(m+mn)/U(m) x U(n) V4
AL 0 0 1 ) U (n) 0
Al +1 0 Ro O(m+n)/O(m) xO(n) VA
BDI +1 +1 1 R O (n) Z,
D 0 +1 0 Ro O (2n) /U (n) Zs
DIII -1 +1 1 Rs U (2n) /Sp (n) 0
All -1 0 0 Ra Sp(m +mn) /Sp(m) x Sp (n) VA
CII 1 1 1 Rs Sp (n) 0
C 0 -1 0 Re Sp (n) /U (n) 0
CI +1 -1 1 Rz U(n) /O (n) 0

*I This note is based on Appendices A and B of my master’s thesis.



with E; < 0 fori € {occupied} and E; > 0 and 7 € {empty}, we focus on the flattened counterpart
H = Z (=1) [pa) (il + Z (+1) [0a) (il - (5)
t€{occupied} i€ {empty}

In the absence of time-reversal symmetry with the sign —1 (i.e., classes A, Alll, Al, BDI, D, C, and
CI), the numbers of occupied and empty bands are chosen to be n and m, respectively. Meanwhile, in
classes DIII, All, and CII, time-reversal symmetry with the sign —1 enforces Kramers degeneracy, and
the numbers of occupied and empty bands are assumed to be 2n and 2m, respectively. Furthermore, in
the presence of particle-hole or chiral symmetry (i.e., classes Alll, BDI, D, DIII, CII, C, and CI), we
should consider half filling m = n so that the symmetry will be satisfied and the gap will be open.

1.1 Standard (Wigner-Dyson) class (classes A, Al, and All)

We diagonalize the flattened Hermitian matrix H in Eq. (5) as

_ L, O _1
H=U ( 0 - In> u—, (6)
where I, is the n X n identity matrix, and U diagonalizes H and belongs to

U(m+n) (classA);
UeO(m+mn) (class Al); 7
Sp(m+mn) (class AIl).

Here, U(m +n), O (m +n), and Sp (m + n) are unitary, orthogonal, and (compact) symplectic

groups. Additionally, U follows the gauge transformation,

- U(i) (class A);
U—U (Uom UO ) , Ui€{0(i) (class Al); (8)
" Sp (i) (class AIl).

Thus, the classifying spaces are given as the complex, real, and quaternionic Grassmannians:

U(m +n)

Co = —( 5T (1) (class A) , )
~ O(m+n)

Ro = m (class AI), (10)

Ry= —RmEn) e AL (11)

Sp (m) x Sp (n)

The Z topological invariant is given as the number n of the occupied bands (i.e., zeroth Chern number).



1.2 Chiral class (classes Alll, BDI, and Cll)

Let us choose the unitary matrix S for chiral symmetry in Eq. 3)as S =0, ® I, (§ = 0, ® I2y)
in classes AIIl and BDI (class CII). Then, the flattened Hermitian matrix H in Eq. (5) reads

H= (f?T ’5) (12)

where h is an n X n (2n X 2n) non-Hermitian matrix in classes AIIl and BDI (class CII), and belongs

to
Ci=U(n) (class AIll);

he {Ri=0(n) (classBDI); (13)
R5 =Sp(n) (classCII).

In class BDI, the Z, topological invariant v € {0, 1} is given by

(—1)" == sgndet h. (14)

1.3 Bogoliubov-de Gennes class (classes D, DIll, C, and ClI)

Classes D and C.—In class D, let us choose the antiunitary matrix C in Eq. (2) as C = [5,K
with complex conjugation K. Since iH is a real antisymmetric matrix, we diagonalize the flattened

Hermitian matrix H in Eq. (5) with a proper basis as

N 0 I\ .,
H_1O<_In 0>0 : (15)

where O is a 2n x 2n orthogonal matrix:
0 €0(2n). (16)
This orthogonal matrix O obeys the gauge transformation O — OO satisfying
~( 0 I,\~1 (0 I, ~
O<—In O)O _(_In 0), 0 €0(2n). 17)

When we introduce a matrix G that transforms o, ® I,, to 0, ® I, i.e.,

1 /1, —il
_ —1 = n n
oy @I, =G (0. ®1,)G ", G'_\/§<iIn I, >, (18)

the above gauge transformation reduces to

—1A I, 0 —1Am-1_ (In 0
(G 00)(0 In)(G OG) _<0 Iﬂ). (19)



Hence, the allowed gauge transformation is generally given by

~ w0 _
O:G<O W*>Gl, W eU(n). (20)

Thus, the classifying space is given as

O (2n)

Ro = T (class D). (1)
The Z5 topological invariant v € {0, 1} is given by
(—1)" == sgnPf (iH). (22)

In class C, let us choose the antiunitary matrix C in Eq. (2) as C = (o, ® I,,) K. Owing to particle-

hole symmetry, we diagonalize the flattened Hermitian matrix H in Eq. (5) with a proper basis as

(0 L)
H_1U<_In 0>U , 23)

where U is a 2n X 2n symplectic matrix:

U e€Sp(n). (24)

Since this symplectic matrix U has gauge ambiguity in a similar manner to class D, the classifying

space is given as

(class C). (25)

Classes CI and DIIl.—In class CI, let us choose the unitary matrix S for chiral symmetry in Eq. (3) as
S = 0, ® I, and the antiunitary matrix 7 for time-reversal symmetry in Eq. (1) as 7 = (0, ® I,,) K.
Then, the flattened Hermitian matrix H in Eq. (5) reads Eq. (12), where the n x n non-Hermitian

matrix h satisfies

h! = h. (26)
Here, h is generally expressed as
h=f"f, feU(n), 27)
and has the following gauge ambiguity:
frgf, 9€0(0n). (28)
Thus, the classifying space is given as
Ry = ggz; (class CT) . (29)

In class DIII, let us choose the unitary matrix S for chiral symmetry in Eq. (3) as S = 0, ® I3, and
the antiunitary matrix 7 for time-reversal symmetry in Eq. (1) as 7 = (0, ® 0, ® I,,) K. Then, the
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flattened Hermitian matrix H in Eq. (5) reads Eq. (12), where the 2n x 2n non-Hermitian matrix h

satisfies
(0, @ I,)hT (0, @ I,)"" = h. (30)

Here, h is generally expressed as
h=f"(oy@ L) floy®@1), feU(n), 31)

and has the following gauge ambiguity:

fr=gf, g€Sp(n). (32)
Thus, the classifying space is given as
U (2n)
Rs = lass DIII) . 33
5= 5 ) (class ) (33)

2 Clifford algebra

We summarize the extension problem of Clifford algebra for all the AZ symmetry classes (Table 2).

We consider a generic Hermitian Dirac Hamiltonian in d dimensions:

d
H (k)= kT +mly, (34)
i=1
where k := (k1,--- , kq) is the momentum deviation from a relevant point, and I'g, I'1, - -- , Iy form
the Clifford relation:
{T;,T;} = 26;;. (35)

In the presence of the AZ symmetry, the Dirac matrices respect

TLoT =Ty, TI;T =-T; (i#0); (36)
CFOC:—FO, CFZC:Fl (2#0), (37)
SyS§=-Ty, SI)§=-T; (i#0), (38)

where 7 and C are antiunitary matrices for time-reversal and particle-hole symmetries, respectively,
and § is a unitary matrix for chiral symmetry.

Complex Clifford algebra C1,, is defined with a set of generators {e; };—1.... ,, that satisfies
{ei, €j} — 2(5” (39)

This algebra is complex since these generators can be represented by complex matrices. Complex

Clifford algebra satisfies the following formulas [1]:

Cli2CaC, (40)
Cly, = C(2), 41)
Clpi2 =2 Cl,®2C(2), (42)



Table 2: Extension of Clifford algebra in the Altland-Zirnbauer (AZ) symmetry classification. The
AZ symmetry consists of time-reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral

symmetry (CS). Spatial dimensions are denoted by d.

AZ class TRS PHS CS Extension

A 0 0 0 Ca Clg — Clgyq
Al 0 0 1 Cat1 Clgy1 — Clgso
Al +1 0 0 R_q Clo,g+2 — Cly,a42
BDI +1 +1 1 Ria Clayrs — Class s
D 0 +1 0 Rog Clys — Clys
DIII -1 +1 1 Rs_g Clas — Clya
All -1 0 0 Rug Cly.q — Cls g
cIl -1 -1 1 Rs—a  Classo — Classa
C 0 -1 0 Re-a Clay2,0 — Clgg2,1
CI +1 -1 1 Rrq Clayar = Clayas

where C (2) is a fixed representation for 2 x 2 complex matrices. As we show below, the classify-
ing space C,, corresponds to the extension problem Cl,, — Cl, ;. Since C (2) does not affect the
extension problem, the above formulas lead to a periodic structure of the classifying space (i.e., Bott

periodicity for the complex AZ class):
Cri2 = Ch. (43)

Real Clifford algebra C1,, , is defined with a set of generators {e; };—1,... , that satisfies

. (44)

{eie;} =0 (i #7), 6?—{

This algebra is real since these generators can be represented by real matrices. Real Clifford algebra

satisfies the following formulas [1]:

Clog =ROR, (45)

Clo2 =R(2), (46)
Clho=C, (47)

Clao = H, (48)
Clp-l-l,q-i-l = Clp,q ®R (2) ’ (49)
Clp,q ® Cl072 = Cl“ﬂrg7 (50)
Clyq @ Clag = Clgiap, (51)
Cly g ® Clg s = Clp g4a, (52)
Clp-i-&q = Clq,q+8 = Clp,q ®R (16) ) (53)



where R (n) is a fixed representation for n x n real matrices. As we show below, the classifying
space R4, corresponds to the extension problem Cl,, , — Cl,, 4+1. Since R (16) does not affect the
extension problem, the above formulas lead to a periodic structure of the classifying space (i.e., Bott

periodicity for the real AZ class):
Ross = Ry (54)

1. Class A.—In the absence of symmetry, a set of operators
{Fh T 7Fd7 FO} (55)

forms complex Clifford algebra Cl;41. The extension problem reduces to Cl; — Clg1.

2. Class Alll.—In the presence of chiral symmetry, a set of operators
{Fla 7Fd7 Sa FO} (56)

forms complex Clifford algebra C'l; 5. The extension problem reduces to Clgy1 — Clgya.

3. Class AI.—A set of operators
{JFU; T, JT, Fl, ,Fd} (57)

forms real Clifford algebra Cly 442, where J is a representation of the imaginary unit. The
extension problem reduces to Cly 442 — Cly q42.
4. Class BDI.—A set of operators

{JCT, JT'y, ---,JTg; C, JC, Ty} (58)

forms real Clifford algebra Cl,1 3. The extension problem reduces to Clgi 1,2 — Clgy1 3.

5. Class D.—A set of operators
{JIq, -+, JTg; C, JC, T} (59)

forms real Clifford algebra Cl; 3. The extension problem reduces to Clg o — Clg 3.
6. Class DIII.—A set of operators

{JT1, -+, JTg; C, JC, JCT, I'p} (60)

forms real Clifford algebra Cl; 4. The extension problem reduces to Clg 3 — Clg 4.

7. Class AIl—A set of operators
{T7 JT: JF07 Pl? e 7Pd} (61)

forms real Clifford algebra Cl3 4. The extension problem reduces to Cly g — Cl3 4.
8. Class CIl.—A set of operators

{C, JC, JCT, JFl, R ,er; Fo} (62)

forms real Clifford algebra Cl,3 1. The extension problem reduces to Clgi3,0 — Clg43,1.
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9. Class C.—A set of operators
{C, JC, JT'y, --- ,JT4; Ty} (63)

forms real Clifford algebra Cl42 1. The extension problem reduces to Clgi2,0 — Clg42,1.

10. Class CI.—A set of operators

{C, JC, JI‘l, ,er; JCT, Fo} (64)

forms real Clifford algebra Cl;2 . The extension problem reduces to Clg121 — Clgi22.
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