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We discuss Wannier functions and (electric) polarization in band theory. For simplicity, we here

focus on free fermions in one dimension. For further details, see, for example, Refs. [1, 2].

1 Free fermions

Let us begin with summarizing the diagonalization of free fermions. In the presence of translation

invariance, a many-body N -band Hamiltonian of free fermions in one dimension is generally given as

Ĥ =
∑
k∈BZ

(
ĉ†k,1 ĉ†k,2 · · · ĉ†k,N

)
H (k)


ĉk,1
ĉk,2

...
ĉk,N

 , (1)

where ĉk,n (ĉ†k,n) annihilates (creates) a fermion with momentum k and the internal degree of freedom

specified by n = 1, 2, · · · , N , and H (k) is an N×N Bloch Hamiltonian. The eigenequation of H (k)

is
H (k) u⃗n (k) = En (k) u⃗n (k) , (2)

where En (k) is a single-particle energy, and u⃗n (k) is the corresponding normalized single-particle

eigenstate (u⃗†
mu⃗n = δmn)*1. Then, H (k) is diagonalized as

H (k) =
(
u⃗1 (k) · · · u⃗N (k)

)E1 (k)
. . .

EN (k)


 u⃗†

1 (k)
...

u⃗†
N (k)

 . (3)

Using the diagonalization of the Bloch Hamiltonian H (k), we also diagonalize the many-body Hamil-

tonian Ĥ as

Ĥ =
∑
k∈BZ

(
ĉ†k,1 · · · ĉ†k,N

) (
u⃗1 (k) · · · u⃗N (k)

)E1 (k)
. . .

EN (k)


 u⃗†

1 (k)
...

u⃗†
N (k)


 ĉk,1

...
ĉk,N


=
∑
k∈BZ

N∑
n=1

En (k) χ̂
†
k,nχ̂k,n, (4)

with  χ̂k,1

...
χ̂k,N

 :=

 u⃗†
1 (k)

...
u⃗†
N (k)


 ĉk,1

...
ĉk,N

 ; χ̂k,n :=

N∑
σ=1

(u⃗∗
n (k))σ ĉk,σ. (5)

*1 We here use ⋆⃗ for eigenstates of Bloch Hamiltonians H (k), and |⋆⟩ for eigenstates in the many-body Hilbert space.
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The Bloch states are then defined as

|ϕn (k)⟩ := χ̂†
k,n |vac⟩ =

N∑
σ=1

(u⃗n (k))σ ĉ
†
k,σ |vac⟩ , (6)

with the vacuum |vac⟩ of fermions (i.e., ∀ k ĉk |vac⟩ = 0), and satisfy

Ĥ |ϕn (k)⟩ = En (k) |ϕn (k)⟩ . (7)

2 Wannier function

Using the Bloch states |ϕn (k)⟩, we define the Wannier states as their Fourier transforms:

|Wn (r)⟩ :=
1√
L

∑
k∈BZ

e−ikr |ϕn (k)⟩ (8)

with the system length L. Both |ϕn (k)⟩’s and |Wn (r)⟩’s form a basis for the single-particle Hilbert

space. Indeed, we have ∑
r

|Wn (r)⟩ ⟨Wn (r)| =
∑
k∈BZ

|ϕn (k)⟩ ⟨ϕn (k)| , (9)

giving a projector onto the band n. Notably, |Wn (r)⟩ is spatially localized around r in real space. In

one dimension, this localization exhibits exponential decay in band insulators and algebraic decay in

band metals [3].

Example.—As the simplest example, we consider a single-band metal (i.e., N = 1). The corre-

sponding Bloch states are given as

|ϕ (k)⟩ = ĉ†k |vac⟩ =
1√
L

L∑
x=1

eikxĉ†x |vac⟩ . (10)

Then, from the definition in Eq. (8), the Wannier states are obtained as

|W (r)⟩ = 1√
L

∑
k∈BZ

e−ikr

(
L∑

x=1

eikxĉ†x |vac⟩

)

=

L∑
x=1

(
1

L

∑
k∈BZ

eik (x−r)

)
ĉ†x |vac⟩

→
L∑

x=1

(∮ 2π

0

dk

2π
eik (x−r)

)
ĉ†x |vac⟩ (L → ∞)

=

L∑
x=1

(
eiπ (x−r) sin (π (x− r))

π (x− r)

)
ĉ†x |vac⟩ . (11)

Thus, the Wannier function W (r) := ⟨x|W (r)⟩ is localized around r with the power law (|x⟩ :=

ĉ†x |vac⟩). The algebraic localization, instead of the exponential localization, arises from the metallic

nature of the system. ■
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3 Polarization

We define the (electric) polarization for the band n as the center of the Wannier state |Wn (r)⟩:

Pn := ⟨Wn (r) | (x̂− r) |Wn (r)⟩ , (12)

where x̂ is the position operator satisfying ⟨x, σ | x̂ |x′, σ′⟩ = xδx,x′δσ,σ′ with |x, σ⟩ := ĉ†x,σ |vac⟩.
Importantly, in momentum space, the polarization Pn is given as the Berry phase ϕn over the one-

dimensional Brillouin zone:

Pn =
ϕn

2π
=

∮ 2π

0

dk

2π
u⃗†
n (k) (i∂k) u⃗n (k) . (13)

This is also known as the Zak phase [4]. Notably, the Berry phase ϕn is defined only modulo 2π, and

accordingly, the polarization Pn is defined only modulo 1 (i.e., lattice constant in our notation), which

reflects periodicity of crystals.

Derivation of Eq. (13).—First, the Wannier states are given as

|Wn (r)⟩ =
1√
L

∑
k∈BZ

e−ikr

(
N∑

σ=1

(u⃗n (k))σ ĉ
†
k,σ |vac⟩

)

=
1√
L

∑
k∈BZ

e−ikr

(
N∑

σ=1

(u⃗n (k))σ

(
1√
L

L∑
x=1

eikxĉ†x,σ

)
|vac⟩

)

=
1

L

∑
k∈BZ

L∑
x=1

N∑
σ=1

(u⃗n (k))σ e
ik (x−r) |x, σ⟩

→
∮

dk

2π

∑
x,σ

(u⃗n (k))σ e
ik (x−r) |x, σ⟩ (L → ∞) . (14)

Then, the polarization Pn defined in Eq. (12) is given as

Pn =

∮
dkdk′

(2π)
2

∑
x,σ;x′,σ′

(u⃗∗
n (k))σ e

−ik (x−r) ⟨x, σ | (x̂− r) |x′, σ′⟩ (u⃗n (k
′))σ′ e

ik′(x′−r)

=

∮
dkdk′

(2π)
2

∑
x,σ

(u⃗∗
n (k))σ e

−ik (x−r) (x− r) (u⃗n (k
′))σ e

ik′(x−r). (15)

Here, we notice
(x− r) eik′(x−r) = −i∂k′eik′(x−r), (16)
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and then have

Pn =

∮
dkdk′

(2π)
2

∑
x,σ

(u⃗∗
n (k))σ e

−ik (x−r)
(
−i∂k′eik′(x−r)

)
(u⃗n (k

′))σ

=

∮
dkdk′

(2π)
2

∑
x,σ

(u⃗∗
n (k))σ e

−ik (x−r)
(
eik′(x−r)

)
(+i∂k′ (u⃗n (k

′))σ)

=

∮
dk

2π

∑
σ

(u⃗∗
n (k))σ (i∂k (u⃗n (k))σ) , (17)

leading to Eq. (13). ■

4 Symmetry-protected quantization

Certain symmetry quantizes the polarization Pn and gives rise to a symmetry-protected topological

invariant. Prime examples include chiral symmetry. In the presence of chiral symmetry, flattened

Bloch Hamiltonians are generally expressed as

H (k) =

(
0 q (k)

q† (k) 0

)
, q (k) ∈ U(N/2) , (18)

where the number N of bands is assumed to be even to ensure an energy gap, and the matrix basis

is chosen so that the chiral-symmetry operator will be diagonal. Generic eigenstates of the Bloch

Hamiltonian are then given as

H (k) u⃗n,± (k) = ±u⃗n,± (k) , u⃗n,± :=
1√
2

(
δ⃗n

±q† (k) δ⃗n

)
, (19)

with the N -component vector δ⃗n satisfying (δ⃗n)m = δmn. The Berry connection for the N occupied

bands with negative energy −1 is then obtained as

A (k) =
∑
n

u⃗†
n,− (k) (i∂k) u⃗n,− (k) =

1

2
tr
[
q (k) (i∂k) q† (k)

]
, (20)

and the polarization in Eq. (13) is

P =

∮
dk

2π
A (k)

= −1

2

∮
dk

2πi
tr
[
q (k) ∂kq

† (k)
]

= −1

2

∮
dk

2πi
∂k log det q

† (k) ≡ W1

2
(mod 1) , (21)

which coincides with the half of the integer-valued topological invariant W1 ∈ Z modulo 1. Thus, the

polarization serves as a nonlocal order parameter of topological insulators in one dimension, including

the Su-Schrieffer-Heeger model.
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In one dimension, other symmetry, such as particle-hole symmetry and (spatial) inversion symmetry,

also quantizes the polarization, yielding a Z2 topological invariant. Moreover, the polarization can be

considered as the integral of the Chern-Simons one-form (see, for example, Sec. III B in Ref. [5]).

More generally, the integral of the Chern-Simons d-form can provide a Z2 topological invariant in

odd spatial dimensions d ∈ 2Z + 1. For example, the integral of the Chern-Simons three-form gives

rise to magnetoelectric polarization in three dimensions and serves as a Z2 topological invariant in

time-reversal-invariant topological insulators [6, 7].
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