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We present an exact solution to the Su-Schrieffer-Heeger model with open boundaries*1. The Hamil-

tonian is given by

Ĥ = v

L∑
n=1

(
b̂†nân + â†nb̂n

)
+ t

L∑
n=1

(
â†n+1b̂n + b̂†nân+1

)
, (1)

where ân and b̂n (â†n and b̂†n) represent the fermion annihilation (creation) operators on the two sublat-

tices. For simplicity, we assume that the hopping amplitudes are positive, i.e., v, t > 0.

Let E ∈ R be a single-particle eigenenergy and φ̂ =
∑L

n=1(Anân + Bnb̂n) be the corresponding

single-particle eigenstate with coefficients An, Bn ∈ C. The Schrödinger equation [Ĥ, φ̂] = E φ̂

reads

tBn−1 + vBn = EAn (n = 2, 3, · · · , L) ,
vAn + tAn+1 = EBn (n = 1, 2, · · · , L− 1)

(2)

in the bulk, and

vB1 = EA1, vAL = EBL (3)

at the edges. By defining AL+1 and B0 through Eq. (2), the boundary conditions (3) reduce to

AL+1 = B0 = 0. (4)

Now, we take a plane-wave ansatz An ∼ Aeikn, Bn ∼ Beikn (k ∈ C). While the wave number

is real (k ∈ R) for delocalized states, it is no longer real for localized states. The bulk equation (2)

reduces to (
0 v + te−ik

v + teik 0

)(
A
B

)
= E

(
A
B

)
. (5)

For a nontrivial solution, we have the energy dispersion relation

E (k) = ±
√
v2 + t2 + 2vt cos k. (6)

If an eigenstate with wave number k ∈ R belongs to an eigenenergy E ∈ R, another eigenstate with

wave number −k belongs to the same eigenenergy E. Thus, a generic eigenstate is described by

An = A+e
ikn +A−e

−ikn, Bn = B+e
ikn +B−e

−ikn (7)

*1 I learned this technique from Hosho Katsura during my fourth year as an undergraduate student in his group and wrote
a paper [K. Kawabata, R. Kobayashi, N. Wu, and H. Katsura, Exact zero modes in twisted Kitaev chains, Phys. Rev.
B 95, 195140 (2017) [arXiv:1702.00197]. It was also helpful for my subsequent research on topological phases of
non-Hermitian systems; see, for example, Appendix I of Phys. Rev. X 9, 041015 (2019) [arXiv:1812.09133].
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with A+, A−, B+, B− ∈ C. From the bulk eigenequation (5), we obtain

B+

A+
=

v + teik

E (k)
=: C (k) , (8)

and similarly, B−/A− = C (−k).

The boundary equation (4) leads to the quantization of the wave number k. Specifically, Eq. (4)

leads to (
eik(L+1) e−ik(L+1)

C (k) C (−k)

)(
A+

A−

)
= 0, (9)

which has a nontrivial solution if and only if the determinant of the coefficient matrix vanishes. After

some calculations (please check), we obtain the quantization condition

sin k (L+ 1)

sin kL
= − t

v
(10)

which determines the possible values of k (see Fig. 1 for the behavior of the left-hand side of this

equation). In the trivial phase (t < v), all the wave numbers k are real, and thus all the corresponding

eigenstates are delocalized throughout the system. In the topological phase (t > v), on the other hand,

some of the wave numbers k are no longer real, and the concomitant eigenstates are localized at the

edges.

To determine the localization length, we set k = π + iq (q ∈ R), yielding

t

v
=

sinh q (L+ 1)

sinh qL
→ e|q| (L → ∞) . (11)

Notably, the eigenstates behave like ∼ (−1)
n
eqn, and hence the localization length is given as 1/ |q| ≃

1/ log (t/v). From the energy dispersion in Eq. (6), the corresponding eigenenergies are obtained as

E = ±
√
v2 + t2 + 2vt cos (π + iq) =

√
v2 + t2 − vt (eq + e−q) → 0 (L → ∞) . (12)
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Fig. 1: Left-hand side of the quantization condition in Eq. (10) [i.e., sin k (L+ 1) / sin kL] for L = 4.
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