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We present an exact solution to the Su-Schrieffer-Heeger model with open boundaries*!. The Hamil-

tonian is given by
L L
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where a,, and En (al and I;IL) represent the fermion annihilation (creation) operators on the two sublat-
tices. For simplicity, we assume that the hopping amplitudes are positive, i.e., v, t > 0.
Let £ € R be a single-particle eigenenergy and ¢ = Z£:1 (Apan 4+ Bpby,) be the corresponding

single-particle eigenstate with coefficients A,,, B,, € C. The Schrodinger equation [H,p] = E ¢

reads

tBn_1+UBn:EAn (n:2737"'7L)7

vA, +tA,1 =FEB, (n=12---,L—1) @
in the bulk, and
vBy = FA;, vAp=FEDByp 3)
at the edges. By defining Ay 1 and By through Eq. (2), the boundary conditions (3) reduce to
Api1 =By =0. 4)

Now, we take a plane-wave ansatz A,, ~ Ae'*" B, ~ Bel*" (k € C). While the wave number

is real (k € R) for delocalized states, it is no longer real for localized states. The bulk equation (2)
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For a nontrivial solution, we have the energy dispersion relation

reduces to

E (k) = £v/v2 + 2 + 2ut cos k. (6)

If an eigenstate with wave number k£ € R belongs to an eigenenergy 2 € R, another eigenstate with

wave number —k belongs to the same eigenenergy E. Thus, a generic eigenstate is described by

An — A+6ikn + 1476—il<:n7 Bn — B+€ikn + B,e_ik" (7)

*1 T learned this technique from Hosho Katsura during my fourth year as an undergraduate student in his group and wrote
a paper [K. Kawabata, R. Kobayashi, N. Wu, and H. Katsura, Exact zero modes in twisted Kitaev chains, Phys. Rev.
B 95, 195140 (2017) [arXiv:1702.00197]. It was also helpful for my subsequent research on topological phases of
non-Hermitian systems; see, for example, Appendix I of Phys. Rev. X 9, 041015 (2019) [arXiv:1812.09133].
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with A, A_, B, B_ € C. From the bulk eigenequation (5), we obtain

B+ _U+t€ik .
A, = Bw W v

and similarly, B_ /A_ = C (—k).
The boundary equation (4) leads to the quantization of the wave number k. Specifically, Eq. (4)
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which has a nontrivial solution if and only if the determinant of the coefficient matrix vanishes. After

leads to

some calculations (please check), we obtain the quantization condition

sink (L +1 t

= {10
which determines the possible values of k£ (see Fig. 1 for the behavior of the left-hand side of this
equation). In the trivial phase (f < v), all the wave numbers k are real, and thus all the corresponding
eigenstates are delocalized throughout the system. In the topological phase (¢ > v), on the other hand,
some of the wave numbers k are no longer real, and the concomitant eigenstates are localized at the
edges.

To determine the localization length, we set K = 7w + ig (¢ € R), yielding

t sinhg(L+1) |

L NG . 1

v sinh gL ¢ (L = o0) (In
Notably, the eigenstates behave like ~ (—1)" 9", and hence the localization length is given as 1/ |q| ~

1/log (t/v). From the energy dispersion in Eq. (6), the corresponding eigenenergies are obtained as

E =402+ 124 2utcos(m+ig) = V2 +12 —wvt(e? +e=9) =0 (L — 00). (12)
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Fig. 1: Left-hand side of the quantization condition in Eq. (10) [i.e., sink (L + 1) /sin kL] for L = 4.




