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We investigate time-reversal-invariant 2N -band insulators in two dimensions in class AII:

T H (k) T −1 = H (−k) , T 2 = −1 (1)

with an antiunitary operator T (i.e., T T † = T †T = 1, ∀z ∈ C T zT −1 = z∗). While time-reversal

symmetry enforces the vanishing of the Chern number, it gives rise to a Z2 topological invariant. Here,

we formulate this Z2 topological invariant following Ref. [1]. The Chern number can be characterized

as a pump of the charge polarization. Similarly, we first introduce a time-reversal-invariant counterpart

of the polarization, denoted by time-reversal polarization in Ref. [1], and formulate the Z2 topological

invariant as its spin pump*1. As a basic strategy, we consider the band structure protected by time-

reversal symmetry, particularly focusing on half of the bands (i.e., half of the Kramers pairs) in the

entire Brillouin zone, or equivalently, all the bands in half of the Brillouin zone.

1 Time-reversal polarization

We first consider a one-dimensional 2N -band insulator H (k) that respects time-reversal symmetry

in Eq. (1) and introduce its time-reversal polarization. Owing to time-reversal symmetry in Eq. (1),

eigenstates generally exhibit Kramers degeneracy, represented as*2

|uI
n (−k)⟩ = −eiχn(k)T |uII

n (k)⟩ , |uII
n (−k)⟩ = eiχn(−k)T |uI

n (k)⟩ (2)

with a gauge χn ∈ R. For each s ∈ {I, II}, we define the Berry connection as

As (k) := i
∑
n

⟨us
n (k) |∂k|us

n (k)⟩ , (3)

and the polarization as

P s :=

∮ π

−π

dk

2π
As (k) . (4)

While the polarization P s for one of the Kramers pairs may appear to depend on the specific choice of

the labels I and II, we below demonstrate that this is not the case: P s is invariant with respect to the

choice of these labels I and II. We further show that its difference Pθ := P I − P II, referred to as the

time-reversal polarization in Ref. [1], satisfies*3

*1 The conceptual significance of a Z2 “T polarization” was already noted in Ref. [2], although its precise formulation was
provided in Ref. [1].

*2 We assume no degeneracy other than the Kramers degeneracy.

*3 For an antisymmetric matrix A =

(
0 a

−aT 0

)
with an n × n matrix a, its Pfaffian reads Pf A = (−1)n(n−1)/2 a.

We generally have detA = (Pf A)2 and Pf
(
BABT

)
= (Pf A) (detB) for an arbitrary matrix B.
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(−1)
Pθ =

Pf w (0)√
detw (0)

Pf w (π)√
detw (π)

, (5)

with*4

wmn (k) := ⟨um (−k) |T |un (k)⟩ . (9)

Here, the branches of ±
√

detw (k) are chosen to ensure that the branch at k = 0 is continuously

connected to that at k = π.

We begin with

AI (−k) = i
∑
n

⟨uI
n (−k) |∂k|uI

n (−k)⟩ = AII (k)−
∑
n

∂kχn (k) , (10)

and hence have

P I =

∫ π

0

dk

2π

[
AI (k) +AI (−k)

]
=

1

2π

[∫ π

0

dk A (k)−
∑
n

[χn (π)− χn (0)]

]
(11)

with the total Berry connection A := AI +AII. Meanwhile, w introduced in Eq. (9) reduces to

w (k) =
∑
n

1n,n ⊗
(
⟨uI

n (−k) |T |uI
n (k)⟩ ⟨uI

n (−k) |T |uII
n (k)⟩

⟨uII
n (−k) |T |uI

n (k)⟩ ⟨uII
n (−k) |T |uII

n (k)⟩

)
=

∑
n

1n,n ⊗
(
e−iχn(−k) ⟨uI

n (−k) |uII
n (−k)⟩ −e−iχn(k) ⟨uI

n (−k) |uI
n (−k)⟩

e−iχn(−k) ⟨uII
n (−k) |uII

n (−k)⟩ −e−iχn(k) ⟨uII
n (−k) |uI

n (−k)⟩

)
=

∑
n

1n,n ⊗
(

0 −e−iχn(k)

e−iχn(−k) 0

)
, (12)

where 1n,n is an N ×N matrix whose elements are 1 for (n, n) and 0 otherwise*5. Thus, w satisfies

wT (k) = −w (−k) . (13)

Specifically, at a time-reversal-invariant momentum k = kTRIM ∈ {0, π}, w becomes an antisymmet-

ric matrix, and we have

Pf w (kTRIM) =
∏
n

(
−e−iχn(kTRIM)

)
= (−1)

N
e−i

∑
n χn(kTRIM). (14)

*4 The gauge transformation
|un (k)〉 7→

∑
m

Unm (k) |um (k)〉 (6)

leads to

w (k) 7→ U∗ (−k)w (k)U† (k) , (7)

Pf w (kTRIM) 7→ (Pf w (kTRIM)) (detU∗ (kTRIM)) . (8)

*5 While the matrix elements of w seem different from those in Ref. [1], the final formula is identical.
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Thus, Eq. (11) reduces to

P I =
1

2π

[∫ π

0

dk A (k)− i log
(
Pf w (π)

Pf w (0)

)]
. (15)

Similarly, we have

P II =
1

2π

[∫ π

0

dk A (−k) + i log
(
Pf w (π)

Pf w (0)

)]
, (16)

leading to

Pθ := P I − P II =
1

2π

[∫ π

0

dk (A (k)−A (−k))− 2i log
(
Pf w (π)

Pf w (0)

)]
. (17)

Here, we notice

i tr
(
w† (k) ∂kw (k)

)
= i

∑
mn

w∗
nm∂kwnm (k)

= i
∑
mn

⟨um (k) |T †|un (−k)⟩ ∂k ⟨un (−k) |T |um (k)⟩

= i
∑
n

[⟨un (k) |∂kun (k)⟩+ ⟨∂kun (−k) |un (−k)⟩]

= A (k)−A (−k) , (18)

and thus have

Pθ = − 1

2πi

[∫ π

0

dk tr
(
w† (k) ∂kw (k)

)
− 2 log

(
Pf w (π)

Pf w (0)

)]
= − 1

2πi

[∫ π

0

dk ∂k log det (w (k))− 2 log

(
Pf w (π)

Pf w (0)

)]
= − 1

πi
log

[
Pf w (0)√
detw (0)

Pf w (π)√
detw (π)

]
. (19)

Notably, since detw is a complex function, its square root
√
detw has two branches. Here, we have to

appropriately choose
√
detw such that the branch at k = 0 is continuously connected to that at k = π.

Given the relation detw = (Pf w)
2, we have (Pf w) /

√
detw = ±1, leading to Pθ ∈ Z and Eq. (5).

The ambiguity of the logarithm means that Pθ ∈ Z is well defined modulo 2.

In the additional presence of chiral symmetry that anticommutes with time-reversal symmetry (i.e.,

class DIII), the time-reversal polarization Pθ (mod 2) gives a Z2 topological invariant (see, for example,

Refs. [3, 4] for further details).
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2 Z2 topological invariant

Now, we consider a two-dimensional band insulator H (kx, ky) that respects time-reversal sym-

metry in Eq. (1) and introduce the Fu-Kane Z2 topological invariant as a pump of the time-reversal

polarization. At each time-reversal-invariant momentum ky = kTRIM ∈ {0, π} along the y direction,

the Hamiltonian H (kx, ky = kTRIM) can be regarded as a time-reversal-invariant one-dimensional

band insulator along the x direction. Consequently, we can introduce the time-reversal polarization

Pθ (ky = kTRIM). While Pθ (ky = kTRIM) itself is gauge dependent, the continuous change (pump)

from ky = 0 to ky = π gives a gauge-invariant Z2 topological invariant

ν := Pθ (ky = π)− Pθ (ky = 0) (mod 2) . (20)

Moreover, from Eq. (5), this Z2 topological invariant can be expressed as

(−1)
ν
=

4∏
i=1

Pf w (Γi)√
detw (Γi)

(21)

with time-reversal-invariant momenta Γi ∈ {(0, 0) , (0, π) , (π, 0) , (π, π)} (i = 1, 2, 3, 4) in the two-

dimensional Brillouin zone. Notably, to apply this formula, wave functions should be defined con-

tinuously over the entire two-dimensional Brillouin zone. This is always possible since time-reversal

symmetry enforces the vanishing of the Chern number.
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