Homework II (Condensed Matter Physics II)

Lecturer: Kohei Kawabata (Institute for Solid State Physics, University of Tokyo) Deadline: 16th December 2024

Let us derive a chiral edge state in a Chern insulator described by the Bloch Hamiltonian

$$
H(k_x, k_y) = (t \sin k_x) \sigma_x + (t \sin k_y) \sigma_y + (m + t \cos k_x + t \cos k_y) \sigma_z \tag{1}
$$

with real parameters $t, m \in \mathbb{R}$ ($t \neq 0$) and Pauli matrices σ_i 's ($i = x, y, z$).

(1) Calculate the energy dispersion $E(k_x, k_y)$ (under the periodic boundary conditions in both directions) and identify the conditions under which the band gap closes.

In the following, we place the system on a square lattice of length *L*, and impose the open boundary conditions along the *x* direction and the periodic boundary conditions along the *y* direction. Let $\psi(x, k_y)$ be a two-component single-particle eigenstate at site *x* and momentum k_y . Then, the singleparticle Schrödinger equation reads

$$
T(k_y) \,\vec{\psi}\,(x-1,k_y) + M(k_y) \,\vec{\psi}\,(x,k_y) + T^{\dagger}(k_y) \,\vec{\psi}\,(x+1,k_y) = E(k_y) \,\vec{\psi}\,(x,k_y) \tag{2}
$$

in the bulk ($x = 2, 3, \cdots, L-1$) and

$$
M(k_y) \,\vec{\psi}(1,k_y) + T^{\dagger}(k_y) \,\vec{\psi}(2,k_y) = E(k_y) \,\vec{\psi}(1,k_y) \,, \tag{3}
$$

$$
T(k_y) \,\vec{\psi} \,(L-1,k_y) + M(k_y) \,\vec{\psi} \,(L,k_y) = E(k_y) \,\vec{\psi} \,(L,k_y) \,, \tag{4}
$$

at the left ($x = 1$) and right ($x = L$) edges, respectively. Here, $E(k_y)$ is an eigenenergy for given k_y , and the two-by-two matrices $M(k_y)$ and $T(k_y)$ represent the mass and hopping terms, respectively.

(2) Determine explicit expressions for the two-by-two matrices $M(k_y)$ and $T(k_y)$ above.

To obtain a chiral edge state, we focus on an eigenstate localized at the left edge $(x = 1)$ and assume an ansatz for the eigenstate of the form:

$$
\vec{\psi}(x,k_y) \propto (\lambda(k_y))^{x-1} \,\vec{v}(k_y),\tag{5}
$$

where $\lambda(k_y)$ is a parameter that determines the localization length, and $\vec{v}(k_y)$ is a two-component vector that describes the internal degree of freedom.

(3) Substitute Eq. ([5](#page-0-0)) into Eqs. ([2](#page-0-1)) and ([3](#page-0-2)), and then determine λ (k_y) and E (k_y).

(4) To have a normalizable eigenstate, λ (k_y) should satisfy a certain condition. From this condition, derive a condition for the presence of the chiral edge state. Notably, this should coincide with the condition for the nontrivial Chern number in the bulk wave function.