Homework II (Condensed Matter Physics II)

Lecturer: Kohei Kawabata (Institute for Solid State Physics, University of Tokyo)

Deadline: 16th December 2024

Let us derive a chiral edge state in a Chern insulator described by the Bloch Hamiltonian

$$H(k_x, k_y) = (t\sin k_x)\,\sigma_x + (t\sin k_y)\,\sigma_y + (m + t\cos k_x + t\cos k_y)\,\sigma_z \tag{1}$$

with real parameters $t,m\in\mathbb{R}$ $(t\neq 0)$ and Pauli matrices σ_i 's (i=x,y,z).

(1) Calculate the energy dispersion $E(k_x, k_y)$ (under the periodic boundary conditions in both directions) and identify the conditions under which the band gap closes.

In the following, we place the system on a square lattice of length L, and impose the open boundary conditions along the x direction and the periodic boundary conditions along the y direction. Let $\vec{\psi}(x,k_y)$ be a two-component single-particle eigenstate at site x and momentum k_y . Then, the single-particle Schrödinger equation reads

$$T(k_y)\vec{\psi}(x-1,k_y) + M(k_y)\vec{\psi}(x,k_y) + T^{\dagger}(k_y)\vec{\psi}(x+1,k_y) = E(k_y)\vec{\psi}(x,k_y)$$
 (2)

in the bulk $(x = 2, 3, \dots, L-1)$ and

$$M(k_y)\vec{\psi}(1,k_y) + T^{\dagger}(k_y)\vec{\psi}(2,k_y) = E(k_y)\vec{\psi}(1,k_y),$$
 (3)

$$T(k_y)\vec{\psi}(L-1,k_y) + M(k_y)\vec{\psi}(L,k_y) = E(k_y)\vec{\psi}(L,k_y),$$
 (4)

at the left (x=1) and right (x=L) edges, respectively. Here, $E\left(k_y\right)$ is an eigenenergy for given k_y , and the two-by-two matrices $M\left(k_y\right)$ and $T\left(k_y\right)$ represent the mass and hopping terms, respectively.

(2) Determine explicit expressions for the two-by-two matrices $M(k_y)$ and $T(k_y)$ above.

To obtain a chiral edge state, we focus on an eigenstate localized at the left edge (x = 1) and assume an ansatz for the eigenstate of the form:

$$\vec{\psi}(x, k_y) \propto (\lambda(k_y))^{x-1} \vec{v}(k_y), \qquad (5)$$

where $\lambda(k_y)$ is a parameter that determines the localization length, and $\vec{v}(k_y)$ is a two-component vector that describes the internal degree of freedom.

- (3) Substitute Eq. (5) into Eqs. (2) and (3), and then determine $\lambda(k_y)$ and $E(k_y)$.
- (4) To have a normalizable eigenstate, $\lambda(k_y)$ should satisfy a certain condition. From this condition, derive a condition for the presence of the chiral edge state. Notably, this should coincide with the condition for the nontrivial Chern number in the bulk wave function.