Berry phase of a two-level system

Kohei Kawabata (Institute for Solid State Physics, University of Tokyo)
28th October 2024 — 11th November 2024

We study a two-level system
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where o = (0, 0y,0.) is a vector of Pauli matrices, and B = B (sin § cos ¢, sin § cos ¢, cos ) is a
parameter in polar coordinates (B > 0,0 < 6 < 7, 0 < ¢ < 2m). Since B merely sets an energy
scale, we assign B = 1 below. We consider the Berry phase of the lower level ||) = || (0, ¢)) with
the eigenenergy £ = —B = —1 in two-dimensional (6, ¢) space.

Owing to the spinor structure, the Berry curvature should be uniform in (6, ¢) space. Thus, let us

first focus on the behavior around 6 = 0 and expand
B >~ (ng,ny, 1) (Ing|,|ns| < 1). )

With this parametrization, the lower level ||) = || (n;,n,)) is given as
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Accordingly, the Berry connection is obtained as
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yielding the Berry curvature
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Then, the Chern number is given as
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which is indeed quantized, consistent with the general discussion.
The nonzero Chern number necessitates singularities in the Berry connection A somewhere in two-
dimensional (6, ¢) space. To confirm such singularities, we express the lower level ||) = || (6, ¢)),

with one possible gauge choice, as
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The corresponding Berry connection is obtained as*'
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which indeed diverges at § = 7. Additionally, the Berry curvature is given as
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which is consistent with Eq. (6). Alternatively, let us take another gauge choice,
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The corresponding Berry connection is obtained as
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which diverges at § = 0.
*

As an application, let us consider a continuous Dirac model in two dimensions:
H (k) = kyo, + kyo, + mo, (k € [RQ) (16)

with a mass parameter m € R. The occupied band is represented as Eq. (8) with
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To calculate the Berry connection, we employ k := | /k2 + k2 € [0, 00) and ¢ € [0, 27), leading to
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Consequently, the Berry curvature is given as
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and the Chern number is accordingly obtained as
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*1 The gradient in polar coordinates on the unit sphere reads
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